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1. Motivation

• Future magnetic data storage systems will benefit from magnetic field sensors with:

­ increased sensitivity

­ reliability in extreme environments

­ monolithic integration with semiconductor components for increased sensitivity 

and functionality

• Sensors based on giant-magnetoresistive materials are currently used 

• Example of hybrid magnetic-electronic sensor device: spin-valve transistor
[D. J. Monsma, R. Vlutters, and J. C. Lodder, Science 281, 407 (1998)]

­ room temperature operation requires more complicated fabrication processes

­ problems with leakage currents

New device concept (patent pending) demonstrated here:

Incorporation of granular tunnel-magnetoresisitve material within the gate of a metal-

oxide-semiconductor field-effect transistor (MOSFET)  for  amplified  field  sensitivity
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2. Sensor Design and Functionality

Introduction to MOSFET characteristics
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Sensor Design and Measurement Setup

2. Sensor Design and Functionality

• Incorporation of granular tunnel-magnetoresistive material within gate

• Fixed voltage VMR applied across magnetoresistive layer
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• Current flow IMR through magnetoresistive film due to applied voltage VMR

• IMR leads to stored charge QMR in the magnetoresisitve layer:

• QMR causes shift in transistor threshold voltage ∆VT:

• Applying or changing external magnetic field H → change in IMR → change in 
charge QMR → change in threshold voltage ∆VT

2. Sensor Design and Functionality

Basic operation

⇒ Modulation of transistor current with magnetic field via change in threshold voltage
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2. Sensor Design and Functionality

Expected amplification in transistor drain-source current IDS compared to IMR:
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• Exponential in subthreshold regime, limited by ideality factor n:

• Linear in saturation regime, large absolute change due to large saturation 
current:
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Current-voltage characteristics

3. Sensor Characteristics

• Application of voltage VMR = 10 V across magnetoresistive layer results in 
threshold voltage shift of ~ 0.6 V

• Subthreshold swing of ~ 400 mV / decade of current, corresponds to ideality factor 
n ~ 7.5
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3. Sensor Characteristics

Shift in threshold voltage as a function of current through the Co-SiO2 layer
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theory
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3. Sensor Characteristics

Transistor characteristics as a function of magnetic field

• IMR depends monotonically on magnetic field H

• ∆VT depends monotonically on IMR
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3. Sensor Characteristics

Drain-source current as a function of magnetic field

IMR IDS sub         IDS sat

Zero-magnetic field current I(0) 1.17 µA -0.925 µA -9 mA
Relative change ∆I(H) / I(0) 5 % 21 % <1 %
Amplification factor ∆I(H) / ∆IMR(H) 3.3 500
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4. Conclusions

• New transistor-amplified magnetic field sensor (patent pending) has been proposed, 

experimentally demonstrated, and analyzed.

• Key idea is incorporation of a granular tunnel-magnetoresistive film into the gate of a 

field-effect transistor structure.

• Threshold voltage shift of 50 mV upon application of a 6 kOe magnetic field was 

obtained at room temperature.

→ Four-fold amplification of relative current response

→ Increase in absolute current response by a factor of ~500

• Expected change in subthreshold current for devices with optimal ideality  factor  of  

n ~ 1.75:

- p-channel: ∆IDS sub(H) / IDS sub(0) ~ 67 %, IDS sub(H) / IDS sub(0) ~ 10

- n-channel: ∆IDS sub(H) / IDS sub(0) ~ 200 %, IDS sub(H) / IDS sub(0) ~ 30


